libpysal.weights.vecW¶
- libpysal.weights.vecW(origin_x, origin_y, dest_x, dest_y, threshold, p=2, alpha=-1.0, binary=True, ids=None, build_sp=False, **kwargs)[source]¶
Distance-based spatial weight for vectors that is computed using a 4-dimensional distance between the origin x,y-coordinates and the destination x,y-coordinates
- Parameters:
- origin_x
list
orarray
of vector origin x-coordinates
- origin_y
list
orarray
of vector origin y-coordinates
- dest_x
list
orarray
of vector destination x-coordinates
- dest_y
list
orarray
of vector destination y-coordinates
- threshold
float
distance band
- p
float
Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance
- binarybool
If true w_{ij}=1 if d_{i,j}<=threshold, otherwise w_{i,j}=0 If false wij=dij^{alpha}
- alpha
float
distance decay parameter for weight (default -1.0) if alpha is positive the weights will not decline with distance. If binary is True, alpha is ignored
- ids
list
values to use for keys of the neighbors and weights dicts
- build_spbool
True to build sparse distance matrix and false to build dense distance matrix; significant speed gains may be obtained dending on the sparsity of the of distance_matrix and threshold that is applied
- **kwargs
keyword
arguments
optional arguments for
pysal.weights.W
- origin_x
- Returns:
- w
DistanceBand
W
object
that
uses
4-dimenionaldistances
between
vectors origin and destination coordinates.
- w
Examples
>>> import libpysal >>> x1 = [5,6,3] >>> y1 = [1,8,5] >>> x2 = [2,4,9] >>> y2 = [3,6,1] >>> W1 = libpysal.weights.vecW(x1, y1, x2, y2, threshold=999) >>> list(W1.neighbors[0]) [1, 2] >>> W2 = libpysal.weights.vecW(x1, y2, x1, y2, threshold=8.5) >>> list(W2.neighbors[0]) [1, 2]