libpysal.weights.Delaunay

class libpysal.weights.Delaunay(coordinates, **kwargs)[source]

Constructor of the Delaunay graph of a set of input points. Relies on scipy.spatial.Delaunay and numba to quickly construct a graph from the input set of points. Will be slower without numba, and will warn if this is missing.

Parameters:
coordinatesarray of points, (N,2)

numpy array of coordinates containing locations to compute the delaunay triangulation

**kwargskeyword argument list

keyword arguments passed directly to weights.W

Notes

The Delaunay triangulation can result in quite a few non-local links among spatial coordinates. For a more useful graph, consider the weights.Voronoi constructor or the Gabriel graph.

The weights.Voronoi class builds a voronoi diagram among the points, clips the Voronoi cells, and then constructs an adjacency graph among the clipped cells. This graph among the clipped Voronoi cells generally represents the structure of local adjacencies better than the “raw” Delaunay graph.

The weights.gabriel.Gabriel graph constructs a Delaunay graph, but only includes the “short” links in the Delaunay graph.

However, if the unresricted Delaunay triangulation is needed, this class will compute it much more quickly than Voronoi(coordinates, clip=None).

__init__(coordinates, **kwargs)[source]

Methods

__init__(coordinates, **kwargs)

asymmetry([intrinsic])

Asymmetry check.

from_WSP(WSP[, silence_warnings])

Create a pysal W from a pysal WSP object (thin weights matrix).

from_adjlist(adjlist[, focal_col, ...])

Return an adjacency list representation of a weights object.

from_dataframe(df[, geom_col, ids, use_index])

Construct a Delaunay triangulation from a geopandas GeoDataFrame.

from_file([path, format])

Read a weights file into a W object.

from_networkx(graph[, weight_col])

Convert a networkx graph to a PySAL W object.

from_shapefile(*args, **kwargs)

from_sparse(sparse)

Convert a scipy.sparse array to a PySAL W object.

full()

Generate a full numpy.ndarray.

get_transform()

Getter for transform property.

plot(gdf[, indexed_on, ax, color, node_kws, ...])

Plot spatial weights objects.

remap_ids(new_ids)

In place modification throughout W of id values from w.id_order to new_ids in all.

set_shapefile(shapefile[, idVariable, full])

Adding metadata for writing headers of .gal and .gwt files.

set_transform([value])

Transformations of weights.

symmetrize([inplace])

Construct a symmetric KNN weight.

to_WSP()

Generate a WSP object.

to_adjlist([remove_symmetric, drop_islands, ...])

Compute an adjacency list representation of a weights object.

to_file([path, format])

Write a weights to a file.

to_networkx()

Convert a weights object to a networkx graph.

to_sparse([fmt])

Generate a scipy.sparse array object from a pysal W.

Attributes

asymmetries

List of id pairs with asymmetric weights sorted in ascending index location order.

cardinalities

Number of neighbors for each observation.

component_labels

Store the graph component in which each observation falls.

diagW2

Diagonal of \(WW\).

diagWtW

Diagonal of \(W^{'}W\).

diagWtW_WW

Diagonal of \(W^{'}W + WW\).

histogram

Cardinality histogram as a dictionary where key is the id and value is the number of neighbors for that unit.

id2i

Dictionary where the key is an ID and the value is that ID's index in W.id_order.

id_order

Returns the ids for the observations in the order in which they would be encountered if iterating over the weights.

id_order_set

Returns True if user has set id_order, False if not.

islands

List of ids without any neighbors.

max_neighbors

Largest number of neighbors.

mean_neighbors

Average number of neighbors.

min_neighbors

Minimum number of neighbors.

n

Number of units.

n_components

Store whether the adjacency matrix is fully connected.

neighbor_offsets

Given the current id_order, neighbor_offsets[id] is the offsets of the id's neighbors in id_order.

nonzero

Number of nonzero weights.

pct_nonzero

Percentage of nonzero weights.

s0

s0 is defined as

s1

s1 is defined as

s2

s2 is defined as

s2array

Individual elements comprising s2.

sd

Standard deviation of number of neighbors.

sparse

Sparse matrix object.

transform

Getter for transform property.

trcW2

Trace of \(WW\).

trcWtW

Trace of \(W^{'}W\).

trcWtW_WW

Trace of \(W^{'}W + WW\).

classmethod from_dataframe(df, geom_col=None, ids=None, use_index=None, **kwargs)[source]

Construct a Delaunay triangulation from a geopandas GeoDataFrame. Not that the input geometries in the dataframe must be Points. Polygons or lines must be converted to points (e.g. using df.geometry.centroid).

Parameters:
dfgeopandas.GeoDataFrame

GeoDataFrame containing points to construct the Delaunay Triangulation.

geom_colstr

the name of the column in df that contains the geometries. Defaults to active geometry column.

idslist-like, str

a list-like of ids to use to index the spatial weights object or the name of the column to use as IDs. If nothing is provided, the dataframe index is used if use_index=True or a positional index is used if use_index=False. Order of the resulting W is not respected from this list.

use_indexbool

use index of df as ids to index the spatial weights object.

**kwargskeyword arguments

Keyword arguments that are passed downwards to the weights.W constructor.