{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Gini-Based Measures of Spatial Inequality and Polarization\n", "\n", "\n", "This notebook explores the measurement of spatial inequality and polarization using the Gini coefficient, with a particular focus on Mexican state-level income data between 1940 and 2000. `pysal-inequality` extends the classic Gini coefficient, which quantifies income inequality, to account for spatial relationships among neighboring regions. By leveraging spatial weights matrices, we distinguish between inequality contributions from neighboring areas versus distant areas, enabling a deeper understanding of spatial economic disparities.\n", "\n", "The analysis begins with an overview of the data, which includes decennial per capita incomes of Mexican states, followed by the calculation of the classic Gini coefficient to establish baseline inequality levels. We then extend the analysis to the spatial Gini coefficient, incorporating spatial relationships to reveal localized inequality patterns. The notebook culminates in the Gini-based spatial polarization index, which highlights the extent to which the inequality has a spatial structure.\n", "\n", "\n", "\n", "\n", "## Imports & Input Data\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Last updated: 2025-01-02T17:09:30.317309-08:00\n", "\n", "Python implementation: CPython\n", "Python version : 3.10.16\n", "IPython version : 8.30.0\n", "\n", "Compiler : GCC 13.3.0\n", "OS : Linux\n", "Release : 6.8.0-49-generic\n", "Machine : x86_64\n", "Processor : x86_64\n", "CPU cores : 16\n", "Architecture: 64bit\n", "\n" ] } ], "source": [ "%config InlineBackend.figure_format = \"retina\"\n", "%load_ext watermark\n", "%watermark" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2.5\n", "2.5\n", "2.5\n" ] } ], "source": [ "import geopandas\n", "import inequality\n", "import libpysal\n", "import matplotlib.pyplot as plt\n", "import numpy\n", "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Watermark: 2.5.0\n", "\n", "seaborn : 0.13.2\n", "geopandas : 1.0.1\n", "inequality: 0.1.dev239+g765ded4\n", "numpy : 2.1.2\n", "libpysal : 4.12.1\n", "matplotlib: 3.9.2\n", "\n" ] } ], "source": [ "%watermark -w\n", "%watermark -iv" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To illustrate `pysal-inequality` we utilize a built-in data set on per-capita gross domestic product for the 32 Mexican states measured each decade from 1940 through 2000:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mexico\n", "======\n", "\n", "Decennial per capita incomes of Mexican states 1940-2000\n", "--------------------------------------------------------\n", "\n", "* mexico.csv: attribute data. (n=32, k=13)\n", "* mexico.gal: spatial weights in GAL format.\n", "* mexicojoin.shp: Polygon shapefile. (n=32)\n", "\n", "Data used in Rey, S.J. and M.L. Sastre Gutierrez. (2010) \"Interregional inequality dynamics in Mexico.\" Spatial Economic Analysis, 5: 277-298.\n", "\n" ] } ], "source": [ "libpysal.examples.explain(\"mexico\")" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "pth = libpysal.examples.get_path(\"mexicojoin.shp\")\n", "gdf = geopandas.read_file(pth)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", " | POLY_ID | \n", "AREA | \n", "CODE | \n", "NAME | \n", "PERIMETER | \n", "ACRES | \n", "HECTARES | \n", "PCGDP1940 | \n", "PCGDP1950 | \n", "PCGDP1960 | \n", "... | \n", "GR9000 | \n", "LPCGDP40 | \n", "LPCGDP50 | \n", "LPCGDP60 | \n", "LPCGDP70 | \n", "LPCGDP80 | \n", "LPCGDP90 | \n", "LPCGDP00 | \n", "TEST | \n", "geometry | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "1 | \n", "7.252751e+10 | \n", "MX02 | \n", "Baja California Norte | \n", "2040312.385 | \n", "1.792187e+07 | \n", "7252751.376 | \n", "22361.0 | \n", "20977.0 | \n", "17865.0 | \n", "... | \n", "0.05 | \n", "4.35 | \n", "4.32 | \n", "4.25 | \n", "4.40 | \n", "4.47 | \n", "4.43 | \n", "4.48 | \n", "1.0 | \n", "MULTIPOLYGON (((-113.13972 29.01778, -113.2405... | \n", "
1 | \n", "2 | \n", "7.225988e+10 | \n", "MX03 | \n", "Baja California Sur | \n", "2912880.772 | \n", "1.785573e+07 | \n", "7225987.769 | \n", "9573.0 | \n", "16013.0 | \n", "16707.0 | \n", "... | \n", "0.00 | \n", "3.98 | \n", "4.20 | \n", "4.22 | \n", "4.39 | \n", "4.46 | \n", "4.41 | \n", "4.42 | \n", "2.0 | \n", "MULTIPOLYGON (((-111.20612 25.80278, -111.2302... | \n", "
2 | \n", "3 | \n", "2.731957e+10 | \n", "MX18 | \n", "Nayarit | \n", "1034770.341 | \n", "6.750785e+06 | \n", "2731956.859 | \n", "4836.0 | \n", "7515.0 | \n", "7621.0 | \n", "... | \n", "-0.05 | \n", "3.68 | \n", "3.88 | \n", "3.88 | \n", "4.04 | \n", "4.13 | \n", "4.11 | \n", "4.06 | \n", "3.0 | \n", "MULTIPOLYGON (((-106.62108 21.56531, -106.6475... | \n", "
3 | \n", "4 | \n", "7.961008e+10 | \n", "MX14 | \n", "Jalisco | \n", "2324727.436 | \n", "1.967200e+07 | \n", "7961008.285 | \n", "5309.0 | \n", "8232.0 | \n", "9953.0 | \n", "... | \n", "0.03 | \n", "3.73 | \n", "3.92 | \n", "4.00 | \n", "4.21 | \n", "4.32 | \n", "4.30 | \n", "4.33 | \n", "4.0 | \n", "POLYGON ((-101.5249 21.85664, -101.5883 21.772... | \n", "
4 | \n", "5 | \n", "5.467030e+09 | \n", "MX01 | \n", "Aguascalientes | \n", "313895.530 | \n", "1.350927e+06 | \n", "546702.985 | \n", "10384.0 | \n", "6234.0 | \n", "8714.0 | \n", "... | \n", "0.13 | \n", "4.02 | \n", "3.79 | \n", "3.94 | \n", "4.21 | \n", "4.32 | \n", "4.32 | \n", "4.44 | \n", "5.0 | \n", "POLYGON ((-101.8462 22.01176, -101.9653 21.883... | \n", "
5 rows × 35 columns
\n", "