Source code for inequality.gini

"""
Gini based Inequality Metrics
"""

__author__ = "Sergio J. Rey <srey@asu.edu> "

import numpy
from scipy.stats import norm

__all__ = ["Gini", "Gini_Spatial"]


def _gini(x):
    """
    Memory efficient calculation of Gini coefficient
    in relative mean difference form.

    Parameters
    ----------

    x : array-like

    Attributes
    ----------

    g : float
        Gini coefficient.

    Notes
    -----
    Based on
    http://www.statsdirect.com/help/default.htm#nonparametric_methods/gini.htm.

    """

    n = len(x)
    try:
        x_sum = x.sum()
    except AttributeError:
        x = numpy.asarray(x)
        x_sum = x.sum()
    n_x_sum = n * x_sum
    x = x.ravel()  # ensure shape is (n,)
    r_x = (2.0 * numpy.arange(1, len(x) + 1) * x[numpy.argsort(x)]).sum()
    return (r_x - n_x_sum - x_sum) / n_x_sum


[docs] class Gini: """ Classic Gini coefficient in absolute deviation form. Parameters ---------- y : numpy.array An array in the shape :math:`(n,1)` containing the attribute values. Attributes ---------- g : float Gini coefficient. """
[docs] def __init__(self, x): self.g = _gini(x)
[docs] class Gini_Spatial: # noqa N801 """ Spatial Gini coefficient. Provides for computationally based inference regarding the contribution of spatial neighbor pairs to overall inequality across a set of regions. See :cite:`Rey_2013_sea`. Parameters ---------- y : numpy.array An array in the shape :math:`(n,1)` containing the attribute values. w : libpysal.weights.W Binary spatial weights object. permutations : int (default 99) The number of permutations for inference. Attributes ---------- g : float Gini coefficient. wg : float Neighbor inequality component (geographic inequality). wcg : float Non-neighbor inequality component (geographic complement inequality). wcg_share : float Share of inequality in non-neighbor component. p_sim : float (If ``permuations > 0``) pseudo :math:`p`-value for spatial gini. e_wcg : float (If ``permuations > 0``) expected value of non-neighbor inequality component (level) from permutations. s_wcg : float (If ``permuations > 0``) standard deviation non-neighbor inequality component (level) from permutations. z_wcg : float (If ``permuations > 0``) z-value non-neighbor inequality component (level) from permutations. p_z_sim : float (If ``permuations > 0``) pseudo :math:`p`-value based on standard normal approximation of permutation based values. polarization: float Spatial polarization index with an expected value of 1. polarization_p_sim: float (If ``permutations >0``) pseudo :math:`p`-value for polarization index. polarization_sim: float (If ``permutations >0``) polarization values under the null from permutations. Examples -------- >>> import libpysal >>> import numpy >>> from inequality.gini import Gini_Spatial Use data from the 32 Mexican States, decade frequency 1940-2010. >>> f = libpysal.io.open(libpysal.examples.get_path('mexico.csv')) >>> vnames = [f'pcgdp{dec}' for dec in range(1940, 2010, 10)] >>> y = numpy.transpose(numpy.array([f.by_col[v] for v in vnames])) Define regime neighbors. >>> regimes = numpy.array(f.by_col('hanson98')) >>> w = libpysal.weights.block_weights(regimes, silence_warnings=True) >>> numpy.random.seed(12345) >>> gs = Gini_Spatial(y[:,0], w) >>> float(gs.p_sim) 0.04 >>> float(gs.wcg) 4353856.0 >>> float(gs.e_wcg) 4170356.7474747472 Thus, the amount of inequality between pairs of states that are not in the same regime (neighbors) is significantly higher than what is expected under the null of random spatial inequality. """
[docs] def __init__(self, x, w, permutations=99): x = numpy.asarray(x) g = _gini(x) self.g = g n = len(x) den = x.mean() * 2 * n**2 d = g * den # sum of absolute devations SAD wg = self._calc(x, w) # sum of absolute deviations for neighbor pairs wcg = d - wg # sum of absolution deviations for distant pairs n_pairs = n * (n - 1) / 2 n_n_pairs = w.s0 / 2 n_d_pairs = n_pairs - n_n_pairs polarization = (wcg / wg) * (n_n_pairs / n_d_pairs) self.polarization = polarization self.g = g self.wcg = wcg self.wg = wg self.dtotal = d self.den = den self.wcg_share = wcg / den if permutations: _scale = n_n_pairs / n_d_pairs ids = numpy.arange(n) wcgp = numpy.zeros((permutations,)) polarization_sim = numpy.zeros((permutations,)) for perm in range(permutations): numpy.random.shuffle(ids) wcgp[perm] = d - self._calc(x[ids], w) polar = wcgp[perm] / (d - wcgp[perm]) polarization_sim[perm] = polar * _scale above = wcgp >= self.wcg larger = above.sum() if (permutations - larger) < larger: larger = permutations - larger self.wcgp = wcgp self.p_sim = (larger + 1.0) / (permutations + 1.0) self.e_wcg = wcgp.mean() self.s_wcg = wcgp.std() self.z_wcg = (self.wcg - self.e_wcg) / self.s_wcg self.p_z_sim = 1.0 - norm.cdf(self.z_wcg) self.polarization_sim = polarization_sim # polarization is a directional concept, upper tail only larger = (polarization_sim >= polarization).sum() self.polarization_p_sim = (larger + 1) / (permutations + 1)
def _calc(self, x, w): sad_sum = 0.0 for i, js in w.neighbors.items(): sad_sum += numpy.abs(x[i] - x[js]).sum() return sad_sum