mapclassify.EqualInterval¶
- class mapclassify.EqualInterval(y, k=5)[source]¶
Equal Interval Classification.
- Parameters:
- y
numpy.array \((n,1)\), values to classify.
- k
int(default5) The number of classes required.
- y
- Attributes:
- yb
numpy.array \((n,1)\), bin IDs for observations. Each value is the ID of the class the observation belongs to \(yb[i] = j\) for \(j>=1\) if \(bins[j-1] < y[i] <= bins[j]\), otherwise \(yb[i] = 0\).
- bins
numpy.array \((k,1)\), the upper bounds of each class.
- k
int The number of classes.
- counts
numpy.array \((k,1)\), the number of observations falling in each class.
- yb
Notes
Intervals defined to have equal width:
\[bins_j = min(y)+w*(j+1)\]with \(w=\frac{max(y)-min(j)}{k}\)
Examples
>>> import mapclassify >>> cal = mapclassify.load_example() >>> ei = mapclassify.EqualInterval(cal, k=5) >>> ei.k 5
>>> ei.counts.tolist() [57, 0, 0, 0, 1]
>>> ei.bins array([ 822.394, 1644.658, 2466.922, 3289.186, 4111.45 ])
Methods
__init__(y[, k])see class docstring
find_bin(x)Sort input or inputs according to the current bin estimate.
get_adcm()Absolute deviation around class median (ADCM).
get_fmt()get_gadf()Goodness of absolute deviation of fit.
get_legend_classes([fmt])Format the strings for the classes on the legend.
get_tss()Returns sum of squares over all class means.
make(*args, **kwargs)Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.
plot(gdf[, border_color, border_width, ...])Plot a mapclassifier object.
plot_histogram([color, linecolor, ...])Plot histogram of y with bin values superimposed
plot_legendgram(*[, ax, cmap, bins, inset, ...])Plot a legendgram, which is a histogram with classification breaks.
set_fmt(fmt)table()update([y, inplace])Add data or change classification parameters.
Attributes
fmt